
Defense, Space & Security
Lean-Agile Software

BOEING is a trademark of Boeing Management Company.
Copyright © 2011 Boeing. All rights reserved.

From Details to Done

Steve Jewett
Systems & Software Technology Conference 2011

A Test-Driven Approach to Software Development

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
MAY 2011 2. REPORT TYPE

3. DATES COVERED
 00-00-2011 to 00-00-2011

4. TITLE AND SUBTITLE
From Details to Done. A Test-Driven Approach to Software Development

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Boeing Defense, Space & Security,PO Box 516,St. Louis,MO,63166

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES
Presented at the 23rd Systems and Software Technology Conference (SSTC), 16-19 May 2011, Salt Lake
City, UT. Sponsored in part by the USAF. U.S. Government or Federal Rights License

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

25

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Copyright © 2011 Boeing. All rights reserved.

Topics

Moving Tests Forward

3 Rules of Test-Driven Development (TDD)

TDD in Unit, Integration and Acceptance Testing

Comprehensive TDD Process

Pros and Cons of TDD

Q&A

Copyright © 2011 Boeing. All rights reserved.

Acceptance
Test

Acceptance
Test

Traditional Development Cycle

Testing Follows Implementation:

Unit tests are executed after modules are completed.

Integration testing follows implementation.

Acceptance testing begins at the end of integration.

Copyright © 2011 Boeing. All rights reserved.

Moving Tests Forward

Testing Occurs Before Implementation:

Acceptance tests are developed as part of the requirements.

Integration tests are developed as part of the design.

Unit tests are developed as part of the implementation.

Test are executed throughout implementation; test failures
drive what to do next.

Requirements

Write
Acceptance

Tests

Design

Write
Integration

Tests

Copyright © 2011 Boeing. All rights reserved.

Testing in an Agile Development Cycle

Agile Development is not phase-oriented, so
tests are executed throughout the cycle, not
just during implementation.

Copyright © 2011 Boeing. All rights reserved.

How Does Testing Drive Development?

Test-Driven Development (TDD) says to create tests first
and let them drive implementation. The three rules of
TDD demonstrate how to do that.

3 Rules of TDD

1. Write production code only to pass a failing test.

2. Write only enough test code to fail.

3. Write only enough production code to pass.

Copyright © 2011 Boeing. All rights reserved.

TDD at the Unit Test Level

Red-Green-Refactor

Write a unit test that fails.

Write production code to make the test pass.

Clean up both test and production code.

for example …

Unit tests are created by developers to add functionality
to a class or module.

At the unit test level the three rules are manifest in the
“red-green-refactor” approach:

Copyright © 2011 Boeing. All rights reserved.

TDD at the Unit Test Level (cont’d)

External dependencies are handled
by creating mock objects.

External
Dependencies

Using the Red-Green-Refactor approach, developers
create unit tests for individual modules as they add
functionality.

Copyright © 2011 Boeing. All rights reserved.

TDD at the Integration Test Level

Additional integration tests may be needed
to address scaling, loading or speed.

Initial integration tests are the unit tests with
real components replacing mock objects.

Copyright © 2011 Boeing. All rights reserved.

Module
A

Module
B

Database

TDD at the Acceptance Test Level

Acceptance tests may take the form of use case
scenarios executed via a user interface …

… or they may be the integration tests
from an external application.

Copyright © 2011 Boeing. All rights reserved.

Unit
TestsCreate

Modules
using

Red-Green-
Refactor

B

C

Execute
Acceptance

Tests Integrate
and Test

Components

Driving Development with Tests

Create
User

Stories

User
Story

User
Story

User
Story

User
Story

Acceptance
Test

Scenario

Create
Acceptance

Test

A

D

B

C

Develop
Initial

Design

Copyright © 2011 Boeing. All rights reserved.

From Details to Done

Develop acceptance test scenarios from groups of related
features.

Develop integration tests for components of a simple,
initial design.

Develop unit tests and components using the red-green-
refactor approach and mock objects.

Integrate components by replacing mock objects with
actual components and executing unit and integration
tests.

Execute acceptance test scenarios to ensure all
functionality is complete.

Copyright © 2011 Boeing. All rights reserved.

Benefits of Test-Driven Development

Definition of Done
Up front test definition provides a
concrete “definition of done”

Customer Acceptance Tests
Allows customers to write acceptance
level tests without needing to
understand technical details

Copyright © 2011 Boeing. All rights reserved.

Drawbacks of Test-Driven Development

Simple Designs
Creates a solution, but not necessarily
the best or most efficient solution

Exhaustive Testing Not Addressed
Difficult and/or inefficient for projects
requiring exhaustive testing

Defense, Space & Security
Lean-Agile Software

BOEING is a trademark of Boeing Management Company.
Copyright © 2011 Boeing. All rights reserved.

End

Copyright © 2011 Boeing. All rights reserved.

[Test]
public class Greeter_Test
{

[TestMethod]
public void TestDisplayHelloWorld()
{

Greeter myGreeter = new Greeter()
}

}

Greeter_Test

Compilation Error

Very Simple TDD Example – Hello World

Copyright © 2011 Boeing. All rights reserved.

public class Greeter
{

Greeter()
}

[Test]
public class Greeter_Test
{

[TestMethod]
public void TestDisplayHelloWorld()
{

Greeter myGreeter = new Greeter()
}

}

Greeter_Test Greeter

Very Simple TDD Example (cont’d)

Copyright © 2011 Boeing. All rights reserved.

public class Greeter
{

Greeter()
}

[Test]
public class Greeter_Test
{

[TestMethod]
public void TestDisplayHelloWorld()
{

Greeter myGreeter = new Greeter()
Assert(myGreeter.getGreeting(), “Hello World”)

}
}

Greeter_Test Greeter

Compilation Error

Very Simple TDD Example (cont’d)

Copyright © 2011 Boeing. All rights reserved.

public class Greeter
{

Greeter()

String getGreeting()
{

return “”
}

}

[Test]
public class Greeter_Test
{

[TestMethod]
public void TestDisplayHelloWorld()
{

Greeter myGreeter = new Greeter()
Assert(myGreeter.getGreeting(), “Hello World”)

}
}

Greeter_Test Greeter

Test Failure

Very Simple TDD Example (cont’d)

Copyright © 2011 Boeing. All rights reserved.

public class Greeter
{

Greeter()

String getGreeting()
{

return “Hello World”
}

}

[Test]
public class Greeter_Test
{

[TestMethod]
public void TestDisplayHelloWorld()
{

Greeter myGreeter = new Greeter()
Assert(myGreeter.getGreeting(), “Hello World”)

}
}

Greeter_Test Greeter

Very Simple TDD Example (cont’d)

Copyright © 2011 Boeing. All rights reserved.

public class Greeter
{

const String greeting = “Hello World”

Greeter()

String getGreeting()
{

return greeting
}

}

[Test]
public class Greeter_Test
{

[TestMethod]
public void TestDisplayHelloWorld()
{

Greeter myGreeter = new Greeter()
Assert(myGreeter.getGreeting(), “Hello World”)

}
}

Greeter_Test Greeter

Very Simple TDD Example (cont’d)

Copyright © 2011 Boeing. All rights reserved.

public class Greeter
{

const String greeting = “Hello World”

Greeter()

String getGreeting()
{

return greeting
}

}

[Test]
public class Greeter_Test
{

const String expectedGreeting = “Hello World”

[TestMethod]
public void TestDisplayHelloWorld()
{

Greeter myGreeter = new Greeter()
Assert(myGreeter.getGreeting(), expectedGreeting)

}
}

Greeter_Test Greeter

Very Simple TDD Example (cont’d)

Copyright © 2011 Boeing. All rights reserved.

public class Greeter
{

const String greeting = “Hello World”

private Greeter()

static Greeter GetInstance()
{

return new Greeter()
}

String getGreeting()
{

return greeting
}

}

[Test]
public class Greeter_Test
{

const String expectedGreeting = “Hello World”

[TestMethod]
public void TestDisplayHelloWorld()
{

Greeter myGreeter = new Greeter()
Assert(myGreeter.getGreeting(), expectedGreeting)

}
}

Greeter_Test Greeter

Compilation Error

Very Simple TDD Example (cont’d)

Copyright © 2011 Boeing. All rights reserved.

public class Greeter
{

const String greeting = “Hello World”

private Greeter()

static Greeter GetInstance()
{

return new Greeter()
}

String getGreeting()
{

return greeting
}

}

[Test]
public class Greeter_Test
{

const String expectedGreeting = “Hello World”

[TestMethod]
public void TestDisplayHelloWorld()
{

Greeter myGreeter = Greeter.GetInstance()
Assert(myGreeter.getGreeting(), expectedGreeting)

}
}

Greeter_Test Greeter

Very Simple TDD Example (cont’d)

Copyright © 2011 Boeing. All rights reserved.

public class Greeter
{

const String greeting = “Hello World”

private Greeter()

static Greeter GetInstance()
{

return new Greeter()
}

String getGreeting()
{

return greeting
}

}

[Test]
public class Greeter_Test
{

const String expectedGreeting = “Hello World”

[TestMethod]
public void TestDisplayHelloWorld()
{

Assert(Greeter.GetInstance().getGreeeting,
expectedGreeting)

}
}

Greeter_Test Greeter

Very Simple TDD Example (cont’d)

	From Details to Done
	Topics
	Traditional Development Cycle
	Moving Tests Forward
	Testing in an Agile Development Cycle
	How Does Testing Drive Development?
	TDD at the Unit Test Level
	TDD at the Unit Test Level (cont’d)
	TDD at the Integration Test Level
	TDD at the Acceptance Test Level
	Driving Development with Tests
	From Details to Done
	Benefits of Test-Driven Development
	Drawbacks of Test-Driven Development
	Slide Number 15
	Very Simple TDD Example – Hello World
	Very Simple TDD Example (cont’d)
	Very Simple TDD Example (cont’d)
	Very Simple TDD Example (cont’d)
	Very Simple TDD Example (cont’d)
	Very Simple TDD Example (cont’d)
	Very Simple TDD Example (cont’d)
	Very Simple TDD Example (cont’d)
	Very Simple TDD Example (cont’d)
	Very Simple TDD Example (cont’d)

